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D-Branes 101

1. Introduction and overview

Dbranes combine methods of string theory and gauge theory in an elegantivay .
An enormous amount of work has been done on Dbranes and string duality. (~
1000 — 2000 papers on hep-th) Our goal in these lectures will be very modest:

The goal of these lectures is to show how the theory of D-branes makes the ADHM
construction of instantons on IR* extremely natural and physical. In particular they give

new and interesting answers to the question: “What happens when an instanton becomes
small?”
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Warning to physicists: These lectures are primarily aimed at mathematicians who
have not thought much about Dbranes before. I have tried to stress points which most
physicists would take for granted, perhaps at the risk of being ridiculously pedantic.

Also, many important topics are omitted. I have completely ignored Type I = het-
erotic, orientation projections, orientifolds, etc.

1.2. Sources

We often will be following closely the development of

1. Chaudhuri, Johnson, Polchinski, “Notes on D-branes,”

2. J. Polchinski, “TASI lectures on D-branes,”

Other recent relevant reviews:

1. Townsend

2. Youm, Dbranes and black holes

3. Banks, Matrix theory

All available on hep-th.

Because I am determined not to start writing a review article I have quite consciously

omitted almost all references and names. The results are due to the usual suspects. The

~ references can be found in the above reviews.



Notation

A(M; E) the space of connections on a vector bundle E — M.

A(s,8) A conformal field theory associated with boundary conditions.

a,pB,... Generic notation for spinor indices. Often for 16 of Spin(1,9).

By: A coordinate coordinate plane in IRY® with p spatial directions. Usually, the
spatial locus of a p-brane. :

dr: Number of transverse dimensions to a brane. For a p-brane in D d1mensmns
dr=D-p-1.

D: Dimension of spacetime, or Dirichlet boundary condition.

¢, & MW spinors of Spin(1,9), or of various subgroups.

Fp: A Fock space based on a highest weight state |p)

(W < S) a é-function supported representative of the Poincaré dual of W in S.

~OxA generic symbol for an element of Hom(V, W), with V, W finite dimensional vector

, ' spaces, usually Chan-Paton spaces.

£, The string scale.

M: A Lorentz index, running M =0,1,...,s

In The N X N unit matrix.

IN: a number operator in a CFT with spectrum the natural numbers including 0.

QF(M): The space of k-forms on a manifold M.

p: Spatial dimension of a brane. The worldvolume has dimension p + 1. Also, a
momentum vector as in p¥.

P(1, s) The Poincaré group of R*

¥: Generic symbol for a quantum state, in a string field theory or in a QFT.

IR'* Minkowski space of signature nasny = Diag{—1,+1°}

s: Dimension of space.

S: Spacetime.

SP(1,s): The minimal superpoincaré aigebra of R,

3: A worldsheet

w(N): The Lie algebra of N x N antihermitian matrices, the adjoint representation
of U(N), the N x N unitary group.

Wp+1: The worldvolume of a p-brane: Wy = B, X R.

YM(B,): A low energy effective Yang-Mills theory on a D-brane located at B, A

, . superior notation is Y M (Wj.1), and, when we wish to emphasize the Chan-Paton bundle,

5 YM(Wpi1, E).



D-Branes 101a

2. The open bosonic string, and its spacetime interpretation

. " The physics of Dbranes is under the best control in supersymmetric theories. However,
several important ideas can be explained without the extra complications of fermions. So,

to begin we will set all fermions, on worldsheet and spacetime to zero.

2.1. Free open string in Minkowski spacetime

w0 Interval I = [0, 7]
Open string: X : I - RY*

StripX: 0<ol<7® —0<0?2<®
. Minkowski signature ws: 0% = i7.
- ’\\\J
) | FRY

Fig. 1: Map of the strip to spacetime

Action:

S_

2 1 2 v\
e / P08 X 0K = 1o /2 (90X, 5X)

The coordinates X7 have length, hence we must introduce a fundamental scale, L.

The corresponding energy scale is M;.

The variational problem is not defined until we choose boundary conditions:

1
2 »
/da&X ol

do 5X"'31X,_,

..". ,' E 65 = 27 (2



=Two solutions on each component of the boundary:
Neumann: 8,X#| =0
Dirichlet: X*| =0
L For each coordinate direction we have 2 x 2 choices. i
‘For the moment make the choice (IV, N).
2.2. Conformal field theory
. 2.2.1.Quantization
% is conformal to upper half-plane: z = eio’ +o°

Propagation in UHP — radial propagation

N N

e

R

Fig. 2: Radial propagation in the upper half plane.

(N, N) Oscillator expansion:

LN Om g
X=zc+ipr+i E —e'™mT cosmo?
m
m#0

=z +p(logz+logz) +i Z Pi"-(z"" +z™™)
mz#£0 m ’

Quantization requires representation of the Heisenberg algebra:

‘ ‘ z#,p¥] = in
C =7 (2.1)
: (o1 0] = My

4



Choose heighest weight representation =>Fock space:

aklpy=0 n>0
ohlp) =plp) n>0
Fp =Span{] [ o, In)}

A= f dPp 7,
2.2.2.Vertex operators, modular functor

One can formulate CFT for open strings axiomatically in the way proposed by Segal.

£ "
v ; Objects: Intervals
S i Morphisms: Surfaces: o
{30
: ,“},[t o Functor: Intervals — A Tc,.- .__._> A
‘. (;r’ J; '\\v' S—— o

Fig. 3: Surfaces as morphisms

By conformal invariance the same information is carried by Vertex operator correlation
functions on the disk or the upper halfplane:

2.2.3.Digression: CFT with a boundary

CFT representation of a disk amplitude with
W;(z), open string VO’s inserted on the boundary.
Vi(z) ® Vi(Z) VO’s inserted in the bulk.
; transform the disk amplitude into sphere amplitude of a chiral CFT:
Doubling trick: equivalent to single oscillator on complex plane.

5



X VZ

Vi
¢ V.
\/‘ v, Vs V‘f Vq 3

Fig. 4: Vertex operators on the disk.

~ Vertex operators inserted on edge — chiral VO’s on the line
"~ Example:

|z — wf®
|z — w|?
(X(2)X(w)) = —log|z—w|]® —loglz—w|* N

(X(2)X (w)) = —log D

Remark: One can consider general classes of conformally invariant boundary condi-
tions. Boundary CFT: [1] A recent paper applying it to branes: [2]

3. Spacetime Interpretation

The global symmetry of the theory is P(1, s), the Poincaré group.
The negative signature of the timelike oscillators =>problems with unitarity.

=BRST cohomology
H=H]} (f dpFp ® Abc)

d: Chevalley-Eilenberg Lie algebra cohomology differential for the Virasoro algebra.
Claim: This is a.completely reducible unitary representation of the Poincaré group
P(1,s).
Proof: Use the grading by level IN. At each level we get an induced representation
» - induced from a finite dimensional representation of the little group.

e In field theory: Unitary irreps «> particles in the spacetime RY®

6



Spectrum:

0=Lo—1=£p -1+N N>0
A —
E*—? =m? = (N — 1)£;2

8.1. Massless modes of the gauge theory

Of greatest importance are the spactime massless modes, associated with the CFT

L ' states at level IN = 1:

euct,|p) €H & €,0X e P X

v Kerd: =p-e=0
, . Imd: =e~ e+ zp.
=>A massless vector boson representation of P(1, s).

e In local field theory particles are described by local quantum fields

The field describing the massless mode of the open string is the Maxwell field A,(z)
with gauge invariance A — A + dA. '

'8.2. The S-matriz

An important physical quantity is the S-matrix:
S: GBNSN'H - &nSNH

It is obtained by using The vertex operator correlation functions to define a certain
measure on the moduli space of surfaces and integrating. One also has to sum over order-
ings.

As long as we work at tree level this can be rigorously defined by analytic continuation

in. momentum.



3.2.1.The spacetime action

Of course, there is an infinite tower of particles. One might try to describe them by

_ an infinite set of quantum fields. For this infinite set of fields we might try to formulate

. - an action principle which reproduces the above S-matrix.

Describing the spacetime field theory interactions of these particles is a difficult prob-

lem, still unsolved today.

For the tree level open string there is an elegant proposal of Witten’s.

Definition. The off-shell statespace is:

A= fdp}.p ® Ay

- A string field is:

3.3.

Ted

The ingredients we need:

a.) A graded differential: d: A — A, d®2 =0, deg(d) = 1.
b.) A (noncommutative) product: ¥ : A@A— A

c.) An integration [ : A — C.

Action:

/\Il*d\Il-l-g-\Il*\Il*\I'

The Chan-Paton construction

The three ingredients (a, b, c) allow the modification:

A= A® Matn(C)

. . where M atn(C) is the algebra of N x N complex matrices.

The modification of the correlation functions is:

8
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M |

.. " 2. The three ingredients are provided any Frobenius algebra

Fig. 5: Product of vertex operators on a disk times a trace.

Remark. A represents oriented open strings and hence has an anti-hermitian involu-

- ’ ; tidn. In string theory we impose a reality condition. In terms of the CP construction this

, requires the replacement:

Maty(C) = u(N)

3.3.1.CP =Nonabelian gauge theory

The Chan-Paton construction modifies the string field theory action by:

/Tr[\IJ*d\II+-2§\If*\II*\IJ]

When we keep only the massless degrees of freedom - i.e. take the low energy effective
theory - we get the nonabelian gauge theory action:

§= [TrF ARF + O(p%ﬁ)]
9y mMm

F=dA+3[A,4)

Remarks:

1. Leading term follows from folk theorem: Locality + Lorentz+ Gauge =>YM action,
at leading order.

9



4. D & N boundary conditions, and their first spacetime interpretation

4.1. Dirichlet boundary conditions
Now let us return to the choice of D or N at each boundary of I = [0, w].

4.1.1.Pictorial interpretation

Let us interpret these boundary conditions pictorially:

ll")’j > 0,1,...,p p+l,...,s
i N o= N D
Y B A
ik og=m N D
’t"""!" r

/s
L aleyp

:'m} ! ;\
<"1 " Table 1: Some boundary conditions

A

ol -

7

For each coordinate direction u, choose D,N at o = 0, 7 =>4 choices.

../P

P‘”) VA

Y

)(.—:)(z

Fig. 6: p+1 coordinates have boundary conditions of type (IV, N). The remaining
have boundary conditions of type (D, D). RHS picture is an important special case.

b]

p+1,...,8

0,1,..,p p+l,...,p
— N D D |
=7 N N D

* Table 2: Mixed boundary conditions

10
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- —r
4y Lo e \
£1° Fig. 7: Typical strings in a sector with mixed boundary conditions.

Conclusion: The choices of boundary conditions are equivalent to a choice of an
“"?q;dered pair (By, Bz) of coordinate coordinate planes in space. We denote the corresponding
. CFT by A(Bl,Bz)'

4.1.2. Oscillators

Now, let us try to understand these CFT’s A(g, 5,)-
(N, N): These coordinates have a momentum zeromode:

. . Qm 5
X=z+ipr+i E —Le'™7 cosmo!
mez-0

= z + p(log z + log 2) +'£Z%”-(z'm +z™™)

(D, D): These coordinates have a position zeromode:
01 . Cm _imr s 1
X=z14(z2 —z1)— +14 E —e'"™" sinmo
T m
mezZ-0

=z, + (Az)(logz — log z) + ¢ E %(z”"‘ +z™™)
: m
mezZ—-0

(D, N): neither momentum nor position zm.

X=z+i —23- e m+3)7 gin(m + )a
mEZ + 2

—""“"Z Fm+} ( —mt1/2 | z-m+1/2)

' 7% (N,D): switch: sin(m + 3)o* — cos(m + 3ot

11
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4.2. Dynamics on the branes

To give a spacetime interpretation we consider now the BRST cohomology:

H(p,,8,) = Hy («4(81,32) ® A)

in a way analogous to what we did when all coordinates had (IV, V) boundary conditions.

For this section we take B; = Bs. We come back to B; # B later.

" 4.2.1.0scillator quantization

Take a single coordinate plane at

‘ B:={X:X*= X3 a=p+1,...s}

" That is, the bc’s are:

(N’N) XH, p=0,1,...p

(D, D) X° a=p+1,...,s

Referring to the above oscillator expansions the Heisenberg algebra has hardly

changed. The only new point is that we now must take a highest weight state |k, X§)

_defined by:
n>0

ag,a‘kp., Xg) =0

of|k*, X*) = k*[kH, X %) p=0,1,...,p

This hwstate generates the Fock space Fi x,, so we have arrived at our conclusion:

The CFT is
As,8) = }{ "tk Fi,x,

' Note that the CFT statespace has a “modulus” - we can speak of a fized position, and we

are automatically considering families of statespaces over spacetime. !

Ly
"1 Physically, the branes we are going to describe are big and heavy, and can be localized.

' 12



4.8. Spacetime fields on the Dbrane

The Dp-brane clearly breaks the spacetime symmetry
P(1,s) D P(1,p) x SO(dr)

The on-shell statespace

Hs,B) = Hj (/ Ptk Fr,x, ® Abc)

Y
@

g-,;,rj{' will form a completely reducible unitary representation of P(1,p) x SO(dr)-

“, . Interpretation:

S

A ,;'i(' The modes of these strings are particles confined to the p-dimensional coordinate plane

e
Lip)

Ky
£
I
1

sl B SO(dr) is a global symmetry of the theory.

.
i
4

;4.3.1.Massless modes
The statespace at level N = 1 is spanned by:
o, |k*, X3) p=0,..'.,p
a®,|k*, X3) a=p+1,...,s
When we study the gauge dependence
e’ — e + zk*
€ — ¢
Thus, we have a connection tangent to the brane and a gauge invariant scalar particle

in the fundamental of SO(dr). That is, the global symmetry group P(1,p)xSO(dr)xU(N)

has particle representation:

(Ind(p — 1;1; u(N)) ® (Ind(1); d; u(N))

The worldsheet-spacetime correspondence is:

W S
‘ ok |k#, X5) ® A (Au(@))’; A€ AWpir;u(IV))
o o, |k*, X&) ® A (9a(2))’;  Ba € L°Wpya; u(N))

13



A € u(N),i,5=1,...,N are CP indices, z € Wp1 = By X R.
Result: the massless field content is the Yang-Mills-Higgs system obtained by dimen-
sional reduction of the D-dimensional Yang-Mills theory along the directions X¢. We

. will denote this p+ 1-dimensional QFT Y M(B,) or sometimes Y M (Wp4.1). It is governed

. - by the low energy effective action:

13 T it

1
S~ —— | TrF AxF +Tr(D)* + > Tr([a, db])2 + - -
9y M a<b

Idea of Proof: The vertex operator calculations leading to Nonabelian gauge theory

:+ i carry over almost unchanged because the oscillator spectrum is almost unchanged. Only

the momentum zeromodes have been changed.

5. The brane and the bulk

" o~

. The spacetime interpretation from the previous section is not really satisfactory.
* Now, if we use the orthogonal decomposition of the Lie algebra:

u(N) = su(N) & u(1)

we see that the u(1) degree of freedom decouples to give a free maxwell field + free
scalar.

fFA*F+zd¢aA*d¢a
a

In this free scalar theory the vacuum state is specified by the zeromode (¢s)o---. -

5.0.1.The meaning of the zeromode: (¢s)o

The ¢ (z) don’t transform in the U(1) theory. The zeromode is gauge invariant and
has a physical meaning: It is the position of the brane in the a-direction. (¢a)o is conjugate
to the momentum of the brane in the at* direction. Put another way, the massless bosons
$%(z) on B are the Goldstone bosons for the breaking of the global symmetry of the CFT
corresponding to translations in the at* direction.

Another proof is to consider the Polyakov path integral representation of the morphism
®5 : A — A in the case where & = [0, 7] x [0, T]. In the presence of nontrivial fields (4, ¢)
on Wpy; the path integral has the form:

/ dX(o,7)e” Joxbx )TrcN (Pe:z:pi / X*(A)+6,.X “¢a) |
8%

14



now we note that this path integral has a symmetry:
X5 — Xg +0X§
¢a '-') ¢a - 6X8 1

+  5.0.2.D branes wiggle
AN Puix)

"

.-; 5 9
o B

Fig. 8: Almost a zeromode...

Therefore: Local variations of the position are oscillations of the brane - it wiggles.

Thus the coordinate plane B will turn out to be the location of a dynamical object
which can move in the ambient space. These dynamical objects are called “Dp-branes.”

Example A good example to keep in mind is the way you would describe the effective
theory of the ocean: The height of the waves is a scalar field in a 2+1 dimensional field
theory defined on (roughly) B = S2.

15
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5.1. A theory of the brane itself?
One could try to formulate a phsyical theory in p + 1 dimensions based solely on the

string sector Az, 5). _
Indeed, people have speculated if we ourselves might not be “confined” to a 3-brane

- embedded in a larger space...
At least in the string model described here that runs into a major difficulty - the

S-matrix based on Az ) alone is not unitary.
" Related to this: energy and momentum will not be conserved:

| 1 ol

/

Fig. 9: A string escapes from the Dp-brane into space.

The quantum field theorist doing scattering experiments on B thus sees an apparent

]

/;\
/

. Fig. 10: Loss of unitarity in the brane QFT.

lack of unitarity:

16



Mathematically, the “good functor” should include all Riemann surfaces:

"

Fig. 11: Other important morphisms.

. The closed string sector

We are simply discovering the closed string sector based on the oscillator expansion:

1
Xt =ghrofr 41y —[afz~™ + gtz ™
z +a0'r+zzm[a =™+ atzTm|
m
The corresponding statespace is
Aclosed = /defp ® ﬁp ® Ab,c,s,é
Of greatest interest are the massless states:
» e?X¢,, 0XP0X" €€ (T*S)®?

These are conveniently separated into irreducible representations, together with the

corresponding spacetime fields:

W S
e € S*(T*S)o gun(z) g€ MET(S)
o € € AX(T*S) Bun(z) B e Q*S)
R Tr(e) $(z) $eQ%S)

17
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with gauge invariances:
g9 =Leg +O(L)) £ € Vect(S)
SAB=dA+0O(£2) AeQYS)
¢ is gauge invariant and has the interpretation of the string coupling:
g = ()

The low energy effective action governing these is

S = D2 [ dPze~2¢ [fR+d¢ A *d¢ + dB A xdB
+¢(3)ESR* + - -

+e*BATr(RARARAR)+---

y A crucial point:
" There are two types of corrections. Physical processes have a typical energy scale E.
'We expand physical quantities in the dimensionless parameters g and in E¢,. In general,
-a.) QFT breaks down when Ef, > 1. We must replace the Einstein-Hilbert +---
action by string theory.

b.) Classicial approximations break down when g, > 1.
‘When these approximations break down answers become singular, but, as Witten said:

2 “In string theory there are no singularities, just surprises.” This is certainly the case for
the zero-size instanton, as we will see later.

A Qs
!
7
sSW %&7 —_— ? ) C}w
///S’mﬁlmalﬂm‘wd”
Clasiad =7 > B

YH, Sogra
Fig. 12: Ignorance space. F is a typical energy or momentum scale in the low
energy derivative expansion.

"2 at a lecture in Princeton, April 1996, recommending small instantons to mathematicians

18



‘c}. . o 2 ? / Elfﬁ =
C\Zy | ’ ‘ Y
' Q

S - £ \f\“"’x

%

Tie Fig. 13: Actually, PDE’s are nontrivial, so the log-log plot is fairer. It also allows
a clearer illustration of the sub-stringy regime of “D-geometry”

5 . O~
. i 1, ? “w / cb(
. . \\v ]

T 2
o 5 2
N Z‘ff@ex”%ly
| ?
7’ ? ' lop 5
\3-: —_ Ty~ o
[\

Fig. 14: Ignorance space from the M-theory viewpoint. There is a sub-stringy
region which, it is claimed, can be probed by D-branes, describing some kind of

“D-geometry.”

5.8. The influence of the D-brane on the bulk

The Dp-brane has energy - it creates a gravitational field outside the brane. We are

going to describe that field.

5.3.1.How to weigh a D-brane

Now, let us ask:
"' 7. “What is the mass of a Dp-brane? ”

19



The Dp-brane has energy/spatial volume = T}, ~ [M ASS|P*!
When you weigh something of mass M, you measure the gravitational interaction

energy with the earth:
_ GM M,

T .

AFE =

*  where M;= mass of the earth.

This is how Polchinski weighed a D-brane.
He calculated the interaction energy bewteen two D-branes using string techniques:

20



=
—1)

—

N
W]AXI-r W
. < —>

Fig. 15: Parallel D-branes. The leading contribution in the interaction energy is
computed from this diagram. The exact energy involves automorphic forms..

- ™ The string answer for the interaction energy is:

o0
AE ~ /0 %t—(pH)/ze—(Ax?t/eﬁ f(it)

where f(7) is an automorphic form (for I'(2)).

There are two regimes of interest:

1.) |AX|> £;: dominated by ¢t — 0

2.) |AX| < £s: dominated by ¢t — oo

In (2) we use the g-expansion around the cusp at co: Here AF is interpreted as a
1-loop diagram in the open string field theory on Y M(Wp41). This is the sub-stringy

'D-geometry region: For more info see Kabat,Douglas,Pouliot, and Shenker.

Right now, we are focusing on (1). To understand this regime use the automorphic
property to get an expansion around the cusp at ¢ = 0:

f(t) ~ Z cre-z‘:rr/t

We recognize in the t-integral the integral repn. of Bessel functions, which are just
Green’s functions: this is closed string exchange.

From the interaction energy you get the gravitational field as follows: Newton’s law
in higher dimensions for the gravitational potential ®(r) generalizes as:

B)=-" =3 o o()=-Zgk? (5.1)

21



Here T, is the energy/volume of a Dp-brane: From this Polchinski concluded his

famous formula

p+1
T, = con.«stl\/{;J (5.2)
8

Moreover, since the gravitational potential is the perturbation Goo = —1+ @ for weak

: 'ﬁelds, we find the metric outside a Dp-brane: 3

14 ) ;g'
B IS~
e f
N '/."’,l o
f Y ‘,
P L I
. et
i 4
4

J

Goo ~ — (1 - const.gs (-f') +-- )
e dT—z
e 2% = ¢ (1 — const.gs (f) + - )

(6.3)

5.3.2. Relation to solutions of sugra equations

These asymptotics turn out to be exactly the asymptotics of nontrivial p-brane type

e  solutions to the sugra equations.

- In semiclassical field theory a nontrivial solution of the field equations corresponds to

. a quantum state through the coherent state formalism: |$(z)).

That is, there is a new sector of the spacetime stringy Hilbert space
Thus, the Dp branes can be considered as a microscopic descriptz’on‘ of new gbjﬁs

objects in the nonperturbative Hilbert space of weakly coupled string theory. They define
states [¥(W)) ¢ FT(R) -

1.

Remarks.

It follows from (5.2) that at weak string coupling the Dbranes are very heavy. Heavy
things make black holes, and it indeed turns out that D-branes provide models of
black holes.

Nevertheless, (5.3) is only to be trusted in the regime where the low energy effective
QFT is to be trusted, namely r > £,;. the gravitational ﬁelcf Guv = My + hyy 88 2
perturbation on flat space is parametrically weak in g,. This is important: we can
trust leading order in string perturbation theory.

. The above formulae are very definitely FALSE for the interesting case of dr < 2. In
this case the massless Green’s function grows at long distances That is why D7, D8, D9
branes are much inore confusing.

In the superstring context we will see that the Dbranes carry a conserved topological
charge.

planck —

. " '3 Use the relation between Planck and string scales 22 = gfﬂf’ -2,

22



6. The Lagrangian for.bulk -4 brane.

The system BULK + BRANE must have a single action.
For a single Dp-brane this action is believed to be:

LBULK + e p-1 / —¢\/0 det Guv +. EZ(F,,,, + Blw)]

Remarks:
1. DBI follows from T duality.
2. Very interesting feature is that only the combination F),, + B, enters.

' - A Polyakov path integral formulation of the sector A(z,z) propagating in a background
& 'L with A, B will involve:

- L f dX (o, ) exp[—f; : / (0X,0X) +1 / X*B +i / X*(A)]
T f“, e B E)>)
,{a{,' e Preserving the spacetime 1-form gauge invariance requires introducing a nontrivial
"4+ invariance of the worldvolume Maxwell theory:
., B=B+dA
A=>A-A

3. The nonabelian version of DBI is not completely clear.

6.0.1.SYM coupling and the UV status of YM

Set B = 0, assume the dilaton ¢ is constant, and expand DBI for small fieldstrengths
F. Get:

4
;P gt fw( detG,,.,+%- "(F,.,,F"”)z (F,,,,F"PFPAF"“)+-.- )

From the leading term we recover the formula for the tension of the D-brane. From the
‘next term we obtain the relation between the Yang-Mills coupling on a Dp-brane and the

bulk string parameters: .
1 1/1\7P
BN (_) (6.1)
9ym s £s :

p < 3: SYM is renormalizable

p > 4: g%y has dimensions of a positive power of length. The SYM system is only
an effective description at distances large compared to this scale.
This has important implications for Matrix theory - c.f. Dijkgraaf’s lectures.
Exercise: KK Reduction YM(Bp41) = Y M(B,) relates YM couplings via:

“dud ! R _ 1
- 9% 9%
f“fw Y M,p+1 Y™

— | Why is this compatible with (6.1) ?
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7. Multi-brane sectors-

Since we have (extended) objécts - D-branes - in our spacetime theory we can now
consider situations where there are many of them- we should consider Fock spaces of D-
" branes. '

7.0.1.Generalization of the CP construction

Consider first the two-brane subsector:
Consider two parallel Dp branes:

‘s '-' A\ 8‘ BZ-
Nl
LS
"
. ..»;Q s
s
. vy il
. -.:;-(kf{'?' v

{{z":" . . v < >
P % |x,

Fig. 16: Parallel branes with Chan-Paton spaces

The CFT statespace Aqw, w,) was formulated above.

Now we must generalize the CP construction:

There is a natural generalization: to each coordinate plane W we attach a vector
'space Vv and now replace the CFT A, w,) by

Ay, wa) ® Hom(Viw, , Vi)
Vw is called the Chan-Paton vector space and

Wp41 X Vw

1's e (hriviel) Chon—Puton vecks bondlle.

Remark. In the theory of curved branes in superstring compactification the branes

B wrap supersymmetric cycles in manifolds of special holonomy. The Chan-Paton vector

space becomes replaced by a vector bundle E — B, and there are indications that the right

way to think about this situation is in terms of a coherent sheaf on spacetime. In any case

, * - in the next lecture we will consider instantons on Dp-branes, and this definitely involves
nontrivial CP vector bundles.
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7.0.2.Spacetime interpretation of the statespace for B; # B; |

Consider two parallel Dp branes:

<8;;CN'> : (82/ CN?)

AN Fig. 17: Parallel branes with Chan-Paton spaces

~

The statespace A(g, 5,) has a spectrum of particles:
)2
Lo=8(F - ) =& gz——mZ) +IN-1
8
The first term on the RHS is there because strings have
Tension = energy/length = 1/¢2
so, classically, a stretched string has minimal mass 4

|Az|
> =
M > z

Moreover, these states transform under the (N1, N2) of the U(N;) x U(N2) gauge
symmetry. The lowest mass (nontachyonic) states are spanned by (at level N = 1):

a’:ﬂk", Xg,la Xg,z) ® Am‘i p=0,...,p
al,|k*, X5 1, X02) ® A™; a=p+1,...,8

,i=1,...,Nygym=1,...,Na, A € Hom(CN‘,CNz) and consists of the reduction of a 10D
massive vector in (N3, N2), so it is described by fields

(Ap@)™ (Fal2))™; (7.1)

4 Because of quantum corrections this reasoning is false for bosonic strings, but turns out to
be.correct for superstrings. '
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but where is £? Which brane is the field on?
Answer: If the energy is such that

|AX]
E< =21
< 2
. -then these states are not part of the low energy QFT description and the question doesn’t

make sense. But, if

AX| o 1
@ KEK Z

then there is a good description in the low energy field theory. To find it notice that for
i | AX -0
£
e 3 the CP spaces “merge” and the fields (7.1) become exactly the massless fields needed to
fill out the U(N; + N2) YM multiplet.

- Now, within the U(Ny + N3) theory Y M(B,) suppose the scalars take vevs:

“'. 3 ¢¢11N1 0
| OldalOrvacey = (P4 b 1.2
- Then expanding around this vacuum ¢, — @4 + (Pa):

Trgnuna (DY) = Trgm (D)* + Trgra (D)” + (92 — 62))* D [(Au(@) ™

Therefore, the vev in the theory Y M(B,) is identified with a relative position in the
ambient spacetime:

(62 — 42) = £,2(AX)"
On distance scales large compared to (AX*®) but small compared to the string scale, the

low energy dynamics is described by e Yang-Mills Higgs multiplet for U(N1 + N2) gauge
theory, but the gauge symmetry is broken:

by the displacement between the branes.

7.0.3.A family of D-brane sectors

Now we have opened up many possibilities: in the theory Y M (Wp41) we could also
consider vev’s breaking symmetry like:

¢¢§,1N1 0 0
(0|9a|0)y re(s,) = 0 21N, O (7.3)
, 0 0 ¢3 N
" . this has the spacetime interpretation of: 3
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(gy .(EN') @z)CNZ) ((83) CNZ ) |

A Fig. 18: 3 branes with CP factors.

Thus, we should consider a family of CFT statespaces over the symmetric produét:
Ap,N
3
SNRYr

~
w

- What is the fiber?

SNRI7 is a stratified space. The strata are labelled by partitions of N. and over,
say, the stratum

S,’f]RdT = {(xl,...,x;,xz,...,xz,...,wk...,:z:k)}gSkle"'

n, N, nK

. The fiber is:

A((B1, Vi), (Ba,Va)) = B1<isi<nAs; v:,8;,v;) ® Hom(Vs;, Vs;) y dimV; = n;

Thus: each coordinate plane B defined by the Dirichlet boundary condiltions comes
equipped with a vector space Vg. The CFT sectors needed to describe multi-Dbrane states
are ordered pairs ((B,V), (B',V")).

7.0.4.Connection to the moduli space of susy vacua

(To make the next point we really ought to be working in the context of superstring
. theory. )

" . The base space can be thought of as a moduli space in two ways.
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In general - there is a beautiful and deep correspondence between phenomena on the
worldsheet and phenomena in spacetime. This carries over nicely to branes - there is a
correspondence between phenomena on the worldvolume and pheonomena in spacetime.
o ' e nekt/lecthre/lwe/jwill shdw/ the/thedry/pn/s Dp brgne/is the/fed ofign 10] 0y,
. . ' '4"“ .\““{::.‘ /
In the present case we have:
S: Parallel Dp branes have no force between them. They are exact eigenstates of the
. spacetime string field theory Hamiltonian ®
ey W: The low energy theory on the brane is the reduction of 10D SYM with 16 super-
charges, and has a moduli space of supersymmetric vacua.
The supersymmetric moduli space of vacua of the brane theory is found by minimizing
the potential energy:

A M= {(g):V = Yo tr [bay i = 0H/UY)
' a<b
"Clearly:
M =SNRY = (R¥ x ... x R%) /SN

The singular orbifold subvarieties correspond to the phenomena of:
W) Vacua with enhanced gauge symmetry.
S) Coincident Dbranes.

The moduli space of supersymmetric vacua is identified with a configuration space of
Dbranes in spacetime.

Remark. Thus, the ¢, are some kind of noncommutative coordinates on spacetime.
This observation has been much further developed in matrix theory.

8. T-duality and D-branes

So far we have taken spacetime S = R'*.
Something dramatically different happens when we compactify. We will simply take
8 =R*"% x T4, with T¢ a flat torus.

3

"5 whatever that is ..., but using supersymmetry we can make such an assertion.
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8.0.1.T duality of the massless scalar

Recall for a closed string:
'W: Electric-magnetic duality
S: T-duality '

¢ = ¢r(t — z) + oLt + 2)
dp = +F = xd¢

¢ = —¢r(t — z) + $1(t + x)

So, from the oscillator expansion:

32
‘P=‘P0+\/§n—I;t+‘/§mRa+¢osc-

el 1 nf? 1, ne?
’ .- = o + 7 ( 7 +mR)(t+0) + 7 ( 7 — mR)(t — ) + dosc-
.‘ - T-duality takes .
R— R =£/R (8.1)

This is an exact duality of perturbative closed string theory. Now, what happens when we
include D-branes?

8.0.2.D-brane with a compact transverse direction

Let us consider a Dbrane with a compact transverse circle:

Bp
/

‘He Xor direct on,

S‘)‘hmj w:xogt‘kg i~

)(PJ,, NI )(f"" + ZTR

!

v Fig. 19: Dbrane with a compact transverse direction.
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Now the sectors of the CFT have a new conserved quantity: The winding number:
As,5) = Guwez ALy
(B,B) wE€ZYY(B,B)
. -with oscillator expansion:
1 . Qm , —
XP+l = XB* f wRo +14 z E’"—(z ™4z

mez—0

- We can write the spectrum immediately since the strings have known tension:

2
2(B? - 7%) = ————(2";'”) +N-1
8

'"’."\»1 Let us focus on the IV = 1 states. These are spanned by AS”)(x). These are massive

. , .
! . gauge bosons. We have an infinite collection of massive gauge bosons of mass 2"—fglﬂl
. 8

W)
= A

>

Fig. 20: Winding string gives a massive gauge boson on the Dbrane.

This tower of particles looks like a Kaluza-Klein tower of vector bosons and scalars,

so consider the KK reduction of Y M (Wp41 X T4/). Reduction amounts to fourier decom-

position:
Aat,g) = Y mIE AW p=0,...,p
weZ
2 da(@*,y) = Y ™ VEAWN ) a=p+1,....s

- o wEZ
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Each gauge boson is associated with a gauge group Map[IR'"? — U(N)). If we take
all these together © this is just the affinization of the gauge group

G = Map[TL/—~ Map[IR? — U(N)]] & Map[R? x T¥— U(N))

" with no central extension.

The KK reduction gives a tower of particles of mass w/R'. Therefore
R =£%/R (8.2)
We recover the above familiar rule of T-dualtiy.
Claim: This continues to hold for the interactions.
" Proof: Use EM duality on the worldsheet with D and N boundary conditions.

Conclusion: We learn that T-duality connects all Dp branes of different p, as long as
there are compact dimensions to dualize:

N Ty Dp — D(p+1)

w (8.3)
Ty: D+1)— Dp

Remark: Which description we use depends on scales. When R < £ there are

" many light states and it is more appropriate to describe the system in terms of a (p +1)-

dimensional gauge theory. When R >> £; we should use Y M (Bp)-

8.0.3.Wilson lines and positions
Now let us consider a situation with several branes at positions
br=wn/R -+ O=yx/R
asin £i3.21 Lelows.
The mass of the gauge bosons associated with winding strings is now:

mass ~ |6; — 0;] + 2nRw/£2

This simply corresponds to KK reduction of a gauge theory in R'"?*! along y with a
flat gauge field: AJ,,dy s.t.:

Pexp f Ag_,_ldy ~ exp [ZWiDiag{OllNl, ooy 061N}

Tr(DaoA)? =Y |DA*P + (6: — 6;)%(4u)'51
Under the duality map T in (8.3) the eigenvalues of the Wilson line of the (p+1)-
brane encode the positions of the p-branes. Once again, moduli of groundstates in a gauge

~ theory are identified with spacetime positions.

" "6 and ignore all other string field theory gauge invariances...
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Fig. 21: Several Dbranes with a compact transverse direction.

K -~
D-Branes 101b

. The bosonic strings and their Dbranes discussed above are not really consistent. We

‘need supersymmetry. From now on we work in 10 dimensional superstrings. s = 9.

9. Superconformal field theory with a boundary

Action: 1 '
S= L (720X DX, + P8, + 400,

We start with ¥ = the strip.
Boundary conditions for bosons are chosen as D or N as before.
For the ws fermions 1, 9, since we have first order systems the only way to cancel the

‘boundary terms is to relate 1 to 9. Two inequivalent boundary conditions on the fermions

are: .
R:y# (o =0) =9H(c' =0)
PH(ot =m) = PH(o* =)
NS: ¢”(01,= 0) = —¢P*(ct = 0)
PH(ot =7) =¢*(o' =)

Since modular transformations mix spin structures a consistent superconformal field
theory requires introducing both boundary conditions so that the CFT statespace has a
Z-grading:

A=Ans ® Ar

. In addition to the choices of N, D at the two boundaries.
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9.1. Oscillators and quantization

Quantization of the oscillator expansions associated with the above bc’s gives a Heisen-

“berg and a Clifford algebra:
' [af, 0] = Téripr,0n™

{"M-‘ ’ "p:-,'} = 5r+r' ,07]“”

Here r,7’ arein Z or Z + %, which depends on the 8 possible boundary conditions:

(9.1)

P/ NS R
" g NN Qny Ynt1/2 Qs Pn
L ,‘ g DD On, Ynt1/2 Qny Pn
,;’;‘l T (DN):(ND) an+1/2:"/’n an+1/2,¢n+1/2

B

. Table 1: Modings for the 8 boundary conditions. n is an integer.

The main new ingredient is that the level zero states IN = 0 must form a representation

of the NSR fermions with moding zero:
{¥6,¥0} =n*

We choose an irrep spanned by states |).
For (N, N) on all coordinates:

Span{|e)} = 16, ® 16_ = R3?

We represent these algebras via a Fock ® Grassmann representation (graded symmet-

ric algebra on the positive frequency modes)' so that

Ans = .7{ dpFy¥
Ap = f dpFXY ® (164 ©16_)
9.2. CFT Statespaces + Spectrum

" . For each coordinate direction (X#,*) we have:
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9.2.1.NS sector

NS groundstate energies:
DD,NN: (am"pn-l-l/Z) ~ ol A= —eeA="3Ia

1,1 31 1
DN : (an+1/2a"/’n) + 18 + = +—2-ﬂ = -|-.i§

Note the integer-moded DN fermions - this will play an important role. .

NN:L0=——-1-+e§p2+1N

o , 16
:.(?",' g "\v/ DD:Lg=——+ ___3?2 1 + N
’,} ; - 16 £2

1
DN.L0—+1—6+]N

Adding the groundstate energies of all the coordinates:

v= number of coordinate directions of given type.

9.2.2.R-sector

Groundstate energy always zero.
Spectrum:
NN : Lo=02p"+ N

—21)2
DD: Lo= (B2 —2)” szl) + N

8

DN : Lo=N

10. Superstrings

S These have many formulations. We will use the covariant NSR formalism. For more
" '. detail see CJP, Polchinski 3.1,3.2
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- SP(1,9).

10.1. Open superstrings -

As before we will start with the case (N, N) on all coordinates (X*, ).

Want: Hilbert space is unitary representation of the minimal superpoincare algebra

10.1.1.GSO projection

The infinite dimensional Clifford algebra has a chirality operator:

-)F = [[(-)*¥-¥ NS

r>0

= 1l)8¢(]j .o ¢8 H(_l)‘l’—r’/’r R

r>0

* Fact: The chirally projected theories:
A:h = AE S &® A.:l'!é

are consistent CFT’s. Note A% |w=o = 165.

Moreover, they admit a conserved A = 1 local “spacetime supersymmetry current”

€*(ja(2) + Ja(2)
where € € 16...

10.1.2.BRST cohomology

The on-shell statespace defined by the Lie algebra cohomology of the superVirasoro
algebra:

H = Hij(Afs © AL)

is a completely reducible unitary reprsentation of SP(1,9).
At IN = 0 the states are massless:
Ans: euPL 5lp)
Kerd: e-p=0, € ~ € + zp, as before
Apg On the states |a)
d, the Dirac-Ramond operator, reduces to the dirac operator:
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<

fs

AN
o

kerd:
puh|p, 8) =0 < Ds(z) =

The representation of the massless little group Spin8 is:

8, @ 8.

Including the Chan-Paton construction the massless particle spectrum as a represen-

tation of Spin(1,9) x U(N) is

Ind(8, ® 84) @ u(N)

forming an on-shell VM representation of the algebra SP6(1,9) with 16 real supercharges.

Field repn: (A, x) where the gaugino x is in the 16_.

v Low energy action:

. .S'———-/Tr(F*F-i—xle)
9% M

10.2. Closed superstrings

Now an interesting new feature appears: The statespace is

Aclosed = (Axs @ 'A‘:ls) ® ("&KS ® '2{.-1;)

The choice + defines the I1B,IIA theory.
Spacetime interpretation: (NS,NS) =G, B, ¢, as before.
A major new factor is the (R, R) sector, describing spacetime bosons. Notice that

these states and fields are of the type (spinor)® (spinor) and are therefore associated with
differential forms. Indeed, recall the decompositions for MW spinors of Spin(1,9): ‘

16 ® 164 = [2=*"(S)]" (10.1)
16, ® 164 = [2°%(8)]* |

The superscript + on the RHS means Hodge self-dual.
In indices, the relevant part of the string field is:

y - U= /deja(z) ®3@(5)(I"‘l""‘"C)“‘Be‘P'XG,,l..,,,k(p)
k .
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Thus we have fields: -

ITA: Ge[o®eooton?’
IIB: GeoPo®o0 00"
How shall we interpret them? |

a.) The physical state conditions come from the Dirac-operator on left and right-

moving spaces. Under the isomorphism (10.1) the dirac operator becomes d @4 so the
- onshell conditions from kerd are:

£ dG =0
S dxG=0
4,’ k:’ | b.) The G’s are already gauge invariant under ¥ — ¥ + dA
f‘%' . "'~ Conclusion: The dynamical fields are given by potentials defined locally by Grt+2) =
7 dotHD);
. ITIA: CWeql c® e ?
IIB: COeQ® cPe? cWet

That is, type II sugra contains generalized Mazwell theories of forms. '
Remarks

1. It is convenient to form the total potential C' =} CP*+1), note that C =k *C.
2. The low energy lagrangian involves:

' / dC®PT) A xdoPt+1)

3. The QO9, Q19 contributions above are interesting but confusing. We ignore them here.

10.8. Generalized Mazwell theories, EM duality, Hodge duality, and all that
Thus, type II sugra involves generalized form theories:
Gwt+2) = gole+l)
cP+) 5 or+1) o gAP)

The sources for Bianchi/EOM are respectively the magnetic/electric currents:

dG@+?) = J,, € QP¥3
xd x G = J, € QP!
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[

(in the presence of localized sources GP+2), +G(P+2) are “currents” in the mathematical

sense.)
In particular, a p-brane soliton localized on W,, which is electrically charged defines a

source which is a é-function representative of the Poincare dual cohomology class n(W —

S):
d* GPH?) = g.p(W < 8)

The charge g.is measured by the integral in the linking sphere in the normal bundle:

Wi

R (pr2)
S Q SD-p2 fe ~ re
. N SD—?—Z

Fig. 22: Linking sphere for electric brane

In a path-integral for the field C(®*+1) the electric source is introduced via the factor:

exp [z / C'(P"'l)]
Wri1

Put differently, the charge is a rank-p antisymmetric tensor under the spatial isometry
group:

Iy, M, = / d°Z(Je)o, M,
Fized time

A D — p — 4 brane can be magnetically charged under C®+1):

dG+?) = N(Wp-p-3 = S)
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£ Fig. 23: Linking sphere for magnetic brane

Wi
o b,
: '.‘-’i‘»,;' ... A magnetic source cannot be introduced into the C®P+1) path integral in a local way.
EPA (;‘:’. ¥

’ : - Using the Hodge * we can define a duality:

do+) = gle+2) &, gP+2) = G(D-P-1) _ 4 (D-2-3)

Remarks
1. The nonabelian generalization of all this is extremely interesting. M-theory promises
that it exists.

2. Type I sugra solitons with p-form charges have been constructed. Note, since the
vertex operator of RR multiplies a fieldstrength G ~ dC the coupling to C vanishes
at p = 0 and hence: All perturbative string states are RR neutral.

3. the intersection numbers of the linking spheres is the symplectic inner product of the
electric/magnetic charges.
Summary: Type II SUGRA RR Forms and their branes:

c )
By E M
Bg M E
' Type IIA
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. Bs is selfdual under C®,

11. D-branes as BPS states

We now consider the effect of D,N boundary conditions. We focus on .A;,B which has

boundary conditions:

0,1,...

» P

/\OL”P

p+l,...,9 /R

N

D | pPrL--+9

Il

N

11.1. Global symmetries of A} g

The presence of the D-brane breaks the Lorentz symmetry:

Spin(1,9) > Spin(1,p) x Spin(dr) (1L.1)

but dimensional reduction preserves the 16 supercharges of the 10D SYM. Thus we
have the family of theories with 16 supercharges:

L @=10N=1,0] 2 d=6N =L, d=4N =4 [d=2N =(8,8)]
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We denote the extended superalgebras in these dimensions by SPig(1,p). The super-
symmetry charges transform under the Lorentz and “R-symmetry” group Spin(dr) in the
representation S+ coming from the 16 In particular we have 7

S*=(42,1)r® %1,2)r Spin(1,5) x Spin(4)e7se
o (2, 1; 4) (<] (1, 2; :1) sz'n(l, 3) X Spin(6)456739
11.2. Massless modes on the brane

Massless modes:

\i4 S
P2, jalk; Xo)ns Au(z) A € AW,pi1;u(I))
Y212k, Xo)vs $a(z) bpt1,...0 € L (Wpi1;u(l))
- |k, Xo, )R Xaa(T) x € T[S™ ® u(N)]
: "'\‘“. This is just the dimensional reduction of 10D SYM giving a susy Yang-Mills-Higgs
-,with Lagrangian:
ﬁ [ ¢ [tr F? 4+ tr (D¢)? + tr [¢, ¢)® + tr xDx + O((EL,)*, g,)] 4

11.8. Broken Supersymmelries in the bulk theory

Recall from the previous lecture that D-branes are objects defining states in the Hilbert
space of the ambient 10-dimensional spacetime theory. Let us call these states |¥(B,V)).

Notice: The brane breaks translation invariance. Throw a ball against a wall: The
brane breaks translation invariance and P is not conserved. But:

(@@~ Pt

hence some supersymmetries are broken. What is much more surprising: some supersym-
metries are preserved! ’

The bulk type II theory has 32 supersymmetries:
€*Qa + & Qa

are conserved charges for arbitrary (¢, €) € 164 @ 16,
But the bulk interacts with the brane, and the brane only has 16 conserved super-

~ symmetries.

"7 The subscript IR means symplectic MW condition.
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Fig. 24: Three pictures representing the interactions between D-brane and bulk. -

Theorem In the sector A( ) the conserved spacetime supercurrent is

(6:5)(2) + (§,9)(2)

- where € and € are related by:

&=T0"P¢

(11.2)

Proof: If all boundary conditions are (N, N) then the conserved supercurrent is just

€*(ja(2)+Ja(Z). The reason is that the conservation of the current requires that no current

can “flow off the end of the interval.” In the upper half plane picture this means

@) - @)

=0

2=z

Now, in the R sector the ws fermions satisfy: 1|,—z = %|.—z. hence j = j, and therefore

only spinors with € = € give conserved currents. Now, 7-duality allows us to map conserved

supercharges for differing values of p. Each 7-duality transformation requires a parity flip
in each coordinate (X#,¢*, preserving X. This produces (11.2). #

Interpretation: For supersymmetry transformations satisfying (11.2),

(€*Qa +&Qa)|¥(B,V)) =0

42
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- Thus, the Dbrane is a state which preserves 1/2 the supersymmetries of the ambient type
3 .'II' -theory: Therefore, it is a BPS state in that theory!



12. Dp-branes and supergravity solutions

The result of the previous section has an important consequence. BPS states carry a
~charge and satisfy the Bogomolnyi bound. That is how it is consistent to have states with
. * positive energy yet annihilated by Q. |

Since the global symmetry is (11.1) the algebra must be
{Q,Q} = CTMPy + CTM Mo Zypy, .,

' Ndw, recall the discussion above of charges in generalized Maxwell theories. p-form
, charges arise from electrically charged p-branes. The only (p + 1)-form charge available is
4 4 theRR charge

Dp branes are the microscopic description of the supergravity solutions with RR charge.

u
[ d

~..12.1. Unbroken supersymmetries
,

.The crucial condition (11.2) can also be derived from the macroscopic viewpoint.

The extremal supergravity soliton equations can be derived from the Killing spinor
equations:

deA=(...)e=0
0m = Dpe+(...)e=0

Under the condition (11.2) these equations lead to first order equations on the fields gen-
eralizing the self-duality equation F' = *F' to supergravity.

(12.1)

Remarks:

1. D-branes were first constructed as an oddity in T-duality. String/U-duality demanded
the existence of states with RR charge. Polchinski then realized that Dbranes carry
RR charge. The simplicity of this description, and the fact that it gives a consistent
microscopic description of the RR solutions then lead to an explosion of activity.

2. Warning: There are other p-branes branes in supergravity, not carrying RR charge,
and they play an important role.

12.2. Measuring the mass

y The mass of the Dp-branes can be calculated just as before by calculating the inter-

1 Y e
.. action energy from:
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»

£ —>
AX
¥
= Fig. 25: tube between branes.

One finds the interaction energy to be:

1 . AE ~/ _t—(p+1)/26—t(AX)2/£§ (Z —tm? Ze—-tm )
ANs

Actually, by supersymmetry this vanishes. So we have justified the statement in the

previous lecture
Two Dp branes of like charge feel no force. Hence the Dp brane of charge N1 + N3 is

a boundstate at threshold.
Nevertheless, considering the separate terms we can measure the mass as in the bosonic

case:
e

T, = const.-2

gs

12.3. BULK + BRANE lagrangian
Once again we have the system defined by:

Liza sucra + 6,7~ 1/ —4’\/; det G,,., + 2(F +B,_w)] + CORRECTION

Now there is a very important correction discussed in the next section, which enters

L .é,t'-leading order in the low-energy expansion.
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13. Instantons as solitons in Y M (Bp4)

Now we want to start asking: what happens when the SYM is not in its groundstate?

In general the answer is very complicated, but for certain states we can say something -
these are the solitonic states of the Yang-Mills theory defined by mathematical instantons.

: We consider a D(p + 4)-brane whose worldvolume includes the directions IRg7g. The

low energy theory is a Yang-Mills theory Y M(Bp44), and we can consider a Chan-Paton
bundle

£ = which is topologically nontr1v1a1 (with L? conditions at oo)

l‘r\ SLaN to ~

Conre

p, - 45

=
7

4
jRam

Fig. 26: A Yang-Mills instanton in the theory Y M (Bp+4).

Choose a coordinate subspace Bpy4 = Bp X R7so-

The Yang-Mills instantons on IR$;sy which are translationally invariant in the
0,1,...,p-directions define p-dimensional solitons in Y M (Bp44, F). The energy density
is proportional to the action density for the 4d yang-mills theory on ]R.6789

Note - the mathematical instanton defines a p-brane physical object in the SYM theory

YM(Bpi4)
p = 0 particle
p = 1 string

p = 2 membrane
Let us call this state |¥(A))yam(5,14)-

The solitonic state |W(A))yr(8,44) 8 @ BPS state in the SYM theory.
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Proof:

The instanton satisfies the equations:

Fyn=0 MaN¢{6’7’8’9}
F=+F M,N € {6,7,8,9}

Consider the supersymmetry variation for a spinor € of Spin(1,p) x Spin(dr):

ox = TMNcFun
N _ %(I\MNFMN+PMNP6789FMN)E
A
A Soif
SN € = —I'%78% (13.1)

T , tht;,n for the state |¥U(A))yam(8B,44)

]

dex = (T(A){e @, x}¥(A4)) =0 (13.2)

That is: spinors satisfying (13.1) define supercharges € - Q in the QFT Y M(Bp44)
which annihilate the instantonic-soliton. Therefore, these solitons preserve at least (in
general, exactly) half the supersymmetry.

Moreover, there is a moduli space of these BPS states so

Mpps = M* = {A: F*(4) = 0}/Map[Rzeo — U(w)]

'14. How gauge fields change the RR charge of a Dp-brane
We argued that D-branes carry charge. This means that the SUGRA action in the
presence of a brane must have something like the form:
L[ acet) asdctt 4y, [ oo+
2 Jrie W1
and the presence of the brane modifies the equations to:
dG?+? =0

(14.1)
dx GO+ = (—1)P* ! n(Wpyy < S)

Lo Iy is the charge of the Dp-brane. Evidently, it should be proportional to the rank N
' of the CP bundle E — Wjpy1.
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14.1. Modification in the presence of gauge fields on the brane

The presence of gauge fields on the brane modifies t(14.1) in an important way.
We want to dodge several tricky issues so we just state what we believe is the correct
result.
: Let:
G =Y ,dC*1) be the total RR fieldstrength
¢ : Wpy1 < S the embedding of the brane worldvolume into spacetime.
E — W41 the CP bundle, with typical fiber V =2 CV.
F = F + *(B)1N the modified fieldstrength.
chF = Try exp(iL
Then we claim that the equation of motion and Bianchi identity are unified into the
,{-.géngle equation:

54

L dG = 1.(chF) (14.2)

 where 4, is the push-forward defined using Poincare duality.
Heuristically, we write this in terms of é-functions over the coordinates z* transverse
to W:
L iF
dG = g&(a: )dz* - Try exp(%)
The derivation of (14.2) is based on the “inflow argument” associated with a configu-
ration of orthogonally intersecting D-branes:

iy

Dl )

» Fig. 27: Intersecting D-branes.
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Remarks. There are several tricky points in this formula, among them:

. The push-forward ¢, is usually only defined on compactly supported cohomology, we

need it on the space of currents.

. Formally the interaction Lagrangian must be of the form:

f *C ATrye” (14.3)
Wrs1

However, this involves both electric and magnetic potentials in the same Lagrangian,
so its status as a Lagrangian in local QFT is confusing. So we stated it in terms of
the equations of motion.

There are also gravitational contributions to (14.3) we are ignoring here.

When one combines (14.3) with the DBI action something nice happens. We consider
G, B, ¢, C as fixed background fields and considers the Lagrangian: 8

gt / ‘4’\/ det G,,,,+£ ( py)} + / *C ATrye” (14.4)
0s Wpt1

as a Lagrangian for a fundamental p-brane. When the background equations G, B, ¢,C

satisfy the supergravity equations of motion then the exact action (14.4) has an im-
portant local supersymmetry called s-supersymmetry. It is thought to be essential to
making a self-consistent theory of p-branes.

14.2. Brane charges and instantonic solitons

Let us now return to the anomalous couplings on a Dp-brane.
As a special case of (14.3) we get the interaction:

/ CP*+chy(F) + CPchy(F)
Wois ‘
Let us choose a coordinate plane B, C Bp44 such that:

Bp4s = Bp x Rézso

Let us furthermore consider a gauge field configuration in the theory Y M (B,,) such

TcFAF = 8n%v

R6789

8 Actually, its supersymmetric version. Fermions terms are suppressed here for simplicity.
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A (p + 4)-brane with-a U(w) brane gauge field with instanton number v i.e., a Chan-
Paton bundle with characteristic classes: (chg = w,chz = v) has the same RR charge as a

~ composite of w (p + 4)-branes and v p-branes.

This suggests that just the way Dp-branes are the microscopic description of SUGRA
solitons, “branes within branes” give the microscopic description of the instantonic solitons

on Dp-branes.

In the next sections we will verify that this is correct.

0., "'15. The (p,p+4) system

Let us now consider two parallel Dp branes.

(Bp44:C*) || (B, C”)

W\

pri

Note there are two case§:

/ . : o Y prl,---, 5
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- Fig. 29: B, can lie within or outside B’ = Bp4.4.

The global rotational symmetries of this configuration are:
v, Spin(1,9) DSpin(1,p) x Spin(9 — p)

PR DSpin(1,p) x Spin(5 — p) x Spin(4)erse
Spin(1,5) x Spin(4)erse

Spin(1,4) x Spin(1) x Spin(4)erse
Spin(1,3) x Spin(2) x Spin(4)erse
Spin(1,2) x Spin(3) x Spin(4)erse
Spin(1,1) x Spin(4)2345 X Spin(4)e7rse
Spin(1,0) x Spin(5) x Spin(4)erse

' This configuration preserves 1/4 of the supersymmetries, namely, by the rule (11.2)
we must have

(15.1)

ST T T T T
[
o = N W b O

& =T01"P¢
— TO01--p[6789,
The first equation eliminates €, leaving ¢ € 16, free. The second equation isolates a
dimp = 8 subspace S* C 16, defined by the condition e = I'67%%.
Thus, the unbroken supersymmetry algebra is the minimal superalgebre SP(1,5) of siz
dimensions. We denote its dimensional reductions by SPs(1,p).

The supersymmetry operators in SPg(l,p) transform under the Lorentz X R-
symmetries (15.1) as:

- p=95: [(452,) ® (4;24)]r

N (15.2)
p=3: 2(2,1;1,2524) +(1,2;1_1;24)
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15.1. Ezamples of recent-use

All examples but 1,5, require further machinery for exposition, but we note that this
system has played an important role in the past few years in many different examples:
1 p = 5: Physical derivation of ADHM moduli space. (described below).
: D4 || D8: Extremal transitions in CY 3-folds.
: D3 || D7: F-theory.
: D2 || D6: 3D mirror symmetry.
: D1 || D5: Models of black holes; “little strings”

: Matrix formulation of (2, 0) superconformal theories.

= o®N
b~ T~ T~ T~ B~
o
O = N W s

Each case has its own personality.

“'1§. Summary of theories with 8 supercharges

- 16:1. Superalgebra

These come from 6D supersymmetry SP(1,5) above.

The supercharges are in the S~ of Spin(1,5). ® Since A2S~ contains the vector we
must introduce the symplectic Majorana condition: That is: the superalgebra contains the
bosonic group:

Spin(1,5) x USp(2)r

with @ transforming in S~ ® 2, subject to a reality condition:

{Qc’rr; Qﬁs} = +(C7M)&ﬁPMJrs

(16.1)
Qi=-BJ-Q

16.2. Massless reps of SP(1,5)

Massless reps are classified by the reps of the massless little group Spin(4)1234 X SU(2):

= (1,1;2) @ (2,1;1)
Ty = [(2,2;1) ® (2,1;2)]r (16.2)
m=(3,1;1)r®(1,1;1)®(2,1;1)

Bosonic fields:

' ® 57 of Spin(6) is = 4 of SU(4)
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L4 1

HM: A quaternionic field ® - 4 real scalars.
VM: A vector field
TM: not discussed

Field content for dimensions p < 5 follows from straightforward dimensional reduction.

p=5—2rp=4—2p=3—=>p=2
HM — HM —-HM — HM
‘ VM —-3VM VM- VM= (HM)* - HM
i . TM - VM — etc

-4
Yoy

16.3. 6D Low energy Lagrangian

For theories with 8 supercharges with a VM and linear HM’s the low-energy effective

P SN
“’O. : d I.;;grangian in 6D is completely determined by the data:
b e G - a compact Lie group with invariant bilinear form on g.
- A quaternionic representation: V @ V* of G.
o FI parameters { € Center(g) ® R®.
! d®¢ |tr F,, F* +tr xDx+(D®,D®)v + (¥, Dy) Jrnfa(*“—é"‘)2 (16.3)
Pynr /IR.1:5 by XEX ) v ) 14 P K A .

Here % is the HK moment map:
peg®R®
for the G-action on the HM’s.
Remark. [ is often referred to as a “D-term.” The D-terms of d = 4, =1 susy are

perhaps more familiar. The USp(2) automdrphism shows that any unit spinor-€” defines
an N =1 algebra. Thus, 3 independent D terms.

16.3.1.Reminder on HK Moment map

Choose coordinates: {z*}a=1, for V and dual coordinates w, for V* then we define

~ quaternionic coordinates,
. ) a za ,wa
- - X = (16.4)

—Wq Zqo
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so that the complex structures I,J, K correspond to right multiplication by ics,i02, %01,
respectively. Moreover, G acts via

5A (2% wa) = {(Ta)* 52 ~wa(T1)° 5} (16.5)

".where 1 < A < dim@ is an index labelling a basis for g, and [(TA)%]* = —(Ta)P,. This

LA

action may be written as:

oA X = (TA)aﬁXﬂ (16.6)
where we replace T by ReT -1+ ImT -I:
(Ta)> 8 0 )
TA)% 5 = ( .. (16.7)
2% 0 [(Ta)%]

For the vector space V @ V* we have Kahler and holomorphic symplectic forms
) _ _
wh = 3 E[dz"‘dza + dwodw®]

(16.8)
. » W€ = Z dz® A dwg

“thése forms comprise a triplet &. The G-action is symplectic with respect to each of these
. forms and hence we obtain a triplet of Noether charges defining the hyperkéhler moment

map: 1 |
fin = 5tr FXL(ra)%XP . (16.9)
Explicitly:

(16.10)

17. Low energy spectrum on the two branes in the (p,p+ 4) system

‘We now return to our system:
(Bp14:C*) || (B, C")
Global bosonic symmétries: l
Spin(1,p) x Spin(5 — p) x Spin(4)erse X U(w) x U(v)
17.1. Massless modes on the D(p + 4)-brane
This is just the réduced SYM multiplet for U(w).

(Ar)™, M=0,....,.95mm' =1,...,w

(XaA)mm’
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17.2. Massless modes on the Dp-brane from H(g, 5,)
Result: As a representation of the algebra SP(1,5) we get 1 VM and 1 HM in the

. adjoint u(v).
Proof:
This is just the reduced SYM multiplet for U(v):

P
Z Bdz* € A(Wp41;u(v))
p=0

Bg1,8,9 € Q°(Wpt1;u(v))
x € T[S* ® u(v)]

. with CP indices:

W

(BM)jj'axjj' j1j’=11'°°a'v

However, because of interactions with the external fields on Bp,4 we split the

SP16(1,p) VM to the SPs(1,p) representation VM & HM:

p=5: By — (Bm=0,1,....5)vm © (Bm=6789) HM

p=3: = (Bp=0,1,...3) Pa=4,5)v M & (Br=6780) HM

17.2.1. The mixed sector Hz s &

/: ] > §789

» Fig. 30: (5,9) fields

54



This gives the most interesting fields.

Result: As a representation of SP(1,5) this sector gives 1 HM in the (v, @) of U(v) X
U(w). .

Proof:
CFT boundary conditions:

0,1,..,p p+l1,..., 5 - 6,7,8,9
o=0 N D D
o= N D N

DN sector boundary conditions in the (Wp41, Wp45) system.

Referring to the above oscillator calculations we see that the groundstate energy £ = 0

-in the NS sector.

(1
- Moreover, in the NS sector, which gives spacetime bosons, we have integer index

' fermions 9%7:%:° and hence, the NS vacuum is a representation of the Clifford algebra:

{¢g’¢g}=_apu p,v=26,7,8,9
The massless fields are described on the worldsheet and spacetime by:
'W: After GSO projection the Clifford vacuum in the NS sector transforms in the 2
of the global symmetry Spin(4)e7so- The groundstates are |4) ® A}
S: These are the bosonic fields in a hypermultiplet:
heT[(1;1;2,1) ® Ve ® V3]
'ﬁAn:

.Since the momentum can only be nonzero in the directions 0,1, ...,p these complex fields

are confined to the brane B, (and not B').

Remark. Reality conditions. The sectors Az 5y and Az s) correspond to the two
orientations of strings. These statespaces can be mapped into each other by a hermitian
conjugation. In the spacetime field theory Y M(B,) the fields are related by a reality
condition:

eAB (hP,(2))" = B4 (z) . (17.1)
It is useful to define the notation:
J = k! = (h*)! € Hom(V, W)

. (17.2)
I = (h?)t = —h! € Hom(W,V)

-, for the VEV’s of these fields
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18. Physical derivation of the ADHM description of instanton moduli space

In the previous section we derived the low energy field content on the various branes.
- We are working with two gauge theories: one on the p-brane and one on the (p+ 4)-brane.
The instantonic soliton of the Y M (B, ;) theory has a'microscdpic description in terms

of the YM(B,) theory.

Let us begin with the case p = 5. 1°

e f
.

£, L 18.1. The classical action

e ; In six dimensions g%, has dimensions of [LENGTH]?. At distances large compared
: ,l t? this length (16.3) is a good approximé.tion.
" The classical 6D action is completely determined by the field content, and this is
, exactly what we solved for in the previous section. 1
| ‘Therefore, all we need to do is work out the precise content of the D-terms.
In the situation under consideration we can write the D terms as follows. We have 4
scalar fields B, valued in u(v). The moment map transforms in the (1,3) of Spin(4)erss,

identified with S2(S*). Thus we can write:

(kaB); = [Be, Bel' j04p + (ha)' n(hB)™ + (RB) m(ha)s (18.1)

Thus, the moduli space of supersymmetric vacua in the theory Y M(B,) on the p-brane.

is just the finite dimensional HK quotient:

MO0 = (B, h,h) : [Be, BT jo55 + (ha) m(hB)s + (h5) m(ha); = 0}/G

& - U (18.2)

10 This is slightly unphysical because of quantum anomalies in the bulk theory. They are not

»  relevant to this discussion. In a type I theory we cancel the anomalies with U(w) — Spin(32)/Z2.
.. 1 =0 in our situation, and g3, has been determined.
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.f'~.‘\\./“ Mbrane {(B’h’ ﬁ) : By, Bel]i jo'ff;} + (;"A)im(hB)":; + (ﬁB)im(hA)n‘:; =0}/G

18.2. Comparing the formulations

Now let us put together what we have learned:
In the theory YM (B, ,) we can consider the moduli of supersymmetric vacua asso-

. ciated with instantonic-solitons made from U(w) instantons of chy = v. The macroscopic
- description of this moduli space is the infinite-dimensional HK quotient:

MP = {A,(z) € AWp4si u(w)) : Fy(4) = 0}/G

G = Map|[Rgzgo — U(w)}

On the other hand, there is a microscopic description of the same moduli space: We

can take w (p + 4)-branes with v p-branes (embedded, in the Higgs branch) and consider

the moduli space of supersymmetric vacua in the theory YM(B,) on the p-brane. This
leads to the finite dimensional HK quotient:

(18.3)

U@ (18.4)

While the moduli spaces (18.3) and (18.4) appear very different they are merely two

different descriptions of the same physical object: the space of low energy excitations of a
Dbrane. Hence one suspects that they are in fact the same:

Mbra.ne — Mbulk (18.5)

This is indeed a mathematical fact: it is the main result of ADHM.
Remark. Global vs. gauge symmetries:
In the theoryY M (B,) U(w) is global, U(v) is gauge.
In the theory Y M (Bp44): U(w) is gauge. U(v) is strongly broken by the instanton size

- i.e., the vevs of the HM’s k. It is not a symmetry of the low energy theory Y M (Bp+4).

That is, “ U(v) is not visible because it is “hidden at the core of the soliton.”

Remark For many purposes it can be useful to break the Spin(4)e7se symmetry by
choosing a complex structure for the transverse space IRg;s We can define two complex
scalar fields B, B valued in u(v):

B = Bg +iB7
B= Bsg + 1By
Then we also break the symmetry of the D-terms and get real and complex moment maps:
”C = [B, B ] +1J

L (18.6)
p® = [B,BY +[B,BY+1It — JiJ

L for the U(v) gauge group
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19. Measuring the instanton field

The above discussion shows that Dbranes can reproduce the ADHM description of

~ the moduli space of D-branes. One can also recover the ADHM construqi;ion of the gauge
" field itself. ‘

19.1. (0,4) sigma models

(0, 4) susy allows leftmoving fermiosn A4 (and leftmoving bosons) which are invariant
: under supersymmetry, d¢A4+ = 0.

WG Theorem[Howe-Papadopoulos, Witten]. A (0,4) sigma model with leftmoving
/ %4  fermions Af can couple to a spacetime gauge field:
e
(?,' o g
Sl / oAy (0 + Au05 X*) Ay (19.1)

. only when A, is an instanton.

19.2. The (1,5,9) system

To do this properly we really should work in the Type I string.
Still-forgetting about certain quantum anomalies in the bulk theory we can understand
the ADHM construction of the U(w) gauge fields of instanton number v.

19.2.1.Constructing a (4,4) string: The (p,p+ 8) = (1,9) system

S0(1,9) D SO(1,1) x SO(8)

16 = (+,84)® (—,8-)

DD: 8 left and right-moving (X*(z%, z'), $%(z°, ') in the internal 8, ® 8.

Note: The fermion zeromodes are in the Green-Schwarz formalism in static gauge.

DN - sector ‘

(DN, NS) : E = 8(+75) > 0 no massless modes

(DN, R): Only 4% have zeromodes. Quantize Clifford: 2 states. GSO: one real state.
(To see this use the U(1) — Z, worldsheet gauge symmetry.)

", . 19.83. Three parallel branes: The 159 system
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Fig731: The 159 system.Picture of the system and the various fields involved.

Combine the systems:
19: string 4+ 59: instanton

- new element 15, DN sectors
1 D1 brane along X%!

v D5 branes X 012345 plane
w D9 branes

Global symmetries:
Spin(1,1)o1 X Spin(4)2ass X Spin(4)erse
Denote spinor indices: (=; 24’ 21'; 24,2Y)

16 = (+,24,24) @ (+,2Y,2%) @ (-, 24,2%) @ (-, 2Y,2%)

Unbroken susy: € = I'0l¢ = I'2345¢ = I'6789%

Preserve 1/8 of the susy’s: The unbroken supersymmetry is of type et44" giving (0,4)

susy o-model on B;.

(11) Sector:
(644’ pA4"); transverse positions of By in the space IR3545 parallel to Bs plane
(v4Y, 1/11_"4'): transverse positions of B; in the space IR3,g9 transverse to Bs plane

(15) Sector:
(¢4 ™, x2™), x¥™.
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(19) Sector:
We also get fields on the D1 probe from A, m = 1,...,w. § projection shows they
are real.

(55) and (59) fields: are external, entering as parameters in the B; Lagrangian. Recall

_ - that the vev’s (Bsrso)*; are moduli of the gauge field. These transform in the rep (2,2) of

Spin(4)e7se and hence are conveniently denoted as (B Ay)‘j
Projecting out the massive modes:
Computing the (0,4) sigma model Lagrangian using the above technique one arrives

. at the fermion terms:

1
. Bui_ptt g2y pip ) (X
fermi mass _ /lem d’o (Xl X2 )_ . (321 —p21 p22_p22 (h,2 %)%) (X2

o
(19.2)

.. Now - for the (0, 4) superconformal field theory we are only interested in the massless

fé;mion zeromodes. So we should find the zeromodes v of the operator in (19.2). Projecting

" these out gives a coupling of type (19.1) with the gauge field A given by the ADHM
- construction.

19.4. Appendiz: The ADHM construction of the instanton

In the standard ADHM construction, The bundle and instanton are constructed as
follows: One introduces linear operators:

If-l-zl
o=|B-2z]|:VoVvHevlew (19.3)
J

r=(—(B-2z) B+zn I):VP eV oWV (19.4)

where V(#) 22 V. In terms of these operators the ADHM equations read

To0 =0
A (19.5)
olo—rrt =0
respectively. One may define the bundle holomorphically as ker 7/imo, or, using the
hermitian metric on V, W, as
E = ker Dt = cokD
D=(c ™M) VeV-svHevew

IfP:VH) V() @ W — E is the orthogonal projection then the ASD connection on E

(19.6)

* is, conceptually, simply V = Pd where d is the exterior derivative acting on sections of the

- trivial bundle ViV @ VD @ W.
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20. The Higgs and Coulomb phases
When we consider the system:

(B54+4,C*) || (Bp,C”)

-

with p < 5 an interesting and important new phenomenon arises.
It is best to start with the classical (16.3) and reduce to p < 5.

20.0.1. Hypermultiplet mass
5 An important term is |Dh|2. Written out with indices, in 6d this becomes:
£ |
n ¢ ' (Dp;‘)A";;‘ = a”ﬁ“g.m + ﬁAim(Bn)ij

.,f-.?(nd hence, upon dimensional reduction to p < 5 we get a mass term:

(g

A w v 5-p
L Y33 ST RA™(Ba) )P = tr v (98T TTT + pTIIT)

A=1,2m=1 j=1 a=p+1

Recall that the eigenvalues of ¢ just represent the separation between B and B'. These
mass terms are just the mass of the DN strings due to the stretching in the DN sector.

20.1. The supersymmetric vacua

Now consider the moduli space of vacua of the theory Y M(B,).
Already from the classical Lagrangian we see something significant. The moduli space
Mbrane of zero energy states in the Dp theory is obtained from:

tr v(¢pt ST+ gteIIM) =0
DI=¢T modU(v)

Now there are two very different branches of the supersymmetric vacua.

Coulomb: ¢t £ 0. The branes are separated: =I = J = 0.
Higgs: ¢ # 0. B, C Bpya
Remark: So far this is a classical picture. The next step uses extended supersym-
metry. The Higgs branch moduli space is not altered by quantum or string corrections. Of
»  course, the Coulomb branch is, this is the subject of SW theory. In the present context
o 'ﬁh'ere are many confusing points, currently one of the most intensively studied issues.
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20.2. The small instantor transition

The eigenvalues of IIt, JTJ measure the sizes of the instantons.

For example when v = 1 the equations become:

IJ =0 IIt = JtJ modU(1).

The instanton scale size is thus identified with the HM vev hh. This gives a type II
string theory answer to the question:

“What happens to a small instanton? ”

The suggested picture is a “phase transition”:

ol-—p

W

pH--45

Fig. 32: A small instanton escapes from the brane.

20.8. 0-branes and SQM on the moduli space of instantons

Remark: It is worth noting that for p = 0 the Higgs branch consists of SQM with
target space the HK quotient. Now, SQM gives a realization of Hodge theory. The Spin5
‘symmetry, which is obvious from the brane setup becomes an USp(4) & Spinb symmetry
of the cohomology of the moduli space. Similarly, the Lefshetz SL(2) symmetry of Kahler
manifolds can be realized as a global symmetry brane a brane picture.

21. Some other topics along these lines
21.1. D-branes and the Nahm transform

D-branes give some new ways of looking at instanton physics. For example -
1. The generalization to instantons on ALE spaces is straightforward. One can reproduce
the results of Kronheimer-Nakajima. ~
2. Some aspects of the Nahm transform follow simply from T-duality. -
.' 3. Calorons, Nahm equations for monopoles, ..
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21.2. Matriz theory

Many of the above techniques/ideas underly the Matrix theory proposal. c.f. Dijk-
graaf’s lectures. ‘

+  21.8. Probing metrics

Probing ALE geometry - it works.
Will Dbranes give an explicit K3 metric?

. "

g

b

" ; Dbranes provided interesting tractable models of quantum black holes.

i An interesting open puzzle: D-branes have trouble “seeing” the horizon of a black

- F4' hole in current models.
ST N
, S

:

£ " 21.4. D-branes and black holes

-21.5. Theories on branes

Further development of the Matrix theory proposal appears to rely on understanding
theories of D-branes decoupled from the bulk SUGRA. There are interesting proposals
to formulate the (0,2) superconformal theory in IR™® in terms of quantum mechanics on
instanton moduli space.
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D-Branes 101b

The bosonic strings and their Dbranes discussed above are not really consistent. We

" need supersymmetry. From now on we work in 10 dimensional superstrings. s = 9.

6. Superconformal field theory with a boundary

Acl;ion:

td S= 71!1? [2 £;20XH0X,, + "B, + Y09,

" § We start with £ = the strip.

Boundary conditions for bosons are chosen as D or N as before. A Fo
Y SinCe une hart Arrty sy shems we M. //J/'C ¢ %

’l .. For the ws fermions 1, 1), the ety retleate B oo into :- HET Twopessrblemefwy.@

'\

,l‘ B boundary conditions on the fermions are:

R:yt(o' = 0) =¢#(c! =0)
Yo' =7) =yH(o" = 7)

NS : ¢#(o! = 0) = —g*(c* = 0)
Since be Lo a(uﬂz;‘ém”; 'l,b”(al =)= il'”(al =)

Mrr Spin Shve
A. consistent superconformal field theory requires introducing both boundary condi-

tions so that the CFT statespace has a Zj-grading:
A=Ans® Ar

In addition to the choices of N, D at the two boundaries.

6.1. Oscillators and quantization

Quantization of the oscillator expansions associated with the above bc’s gives a Heisen-
berg and a Clifford algebra: )

{
[l o] = oo™
{"pfa"/);{'} = 61'-}-1",077”'”

;’Z}(N y Here v Z o re g+,

The Vverioos VMDOQ-!‘“\:JS‘ derem—i on "l"{\-ﬁ L’-Q.é

(6.1)
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. T L2132
/\/DLU We want to Start asking — Lt hoypens w/{eﬁ%r—
F A

STYM 1s not /n 145 Wr/zofmé fe C In generd Yo anuer s
N Very com, ztf-/'eoé byt b certois s dotes
10, Instantons as solitons in YM(By14)  pre Can sa y Somé H, 7’
We are now finally ready to start considering Yang-Mills instantons.
‘ We consider a D(p + 4)-brane whose worldvolume includes the directions IR§;g9. The

_ -low energy theory is a Yang-Mills theory Y M (Bp+ﬁ.aﬁ Wi &3 Consider Chan-Paton

bundle

E— Wp.|.5

which is topologically nontrivial (with L? conditions at o).

O,!- 5
;ﬂ.

2

\

Z7
!

¢ - 2//;

. ~, V///

: i . /;/3/

&— ’r’f? S Pty -5
: ;g/
78
: < fi'/(/
Fig. 24: A Yang-Mills instanton in the theory Y M (B,44). g
Chloose & coordirate Svbspace 6P+V = Bx Rﬂ;‘i o Ol P
The Yang-Mills instantons on Rj;s which are translationally inva,riantf define p-

dimensional solitons in Y M (Bp+4)f),The energy density is proportional to the action density
for the 4d yang-mills theory on Rgyg,.
- Note - the mathematical instanton defines a p-brane physical object in the SYM theory
YM(Bp+y4) '
p = 0 particle
p =1 string
p = 2 membrane

Let us call this state |¥(A))ym(8,44)-

- The solitonic state |¥(A))ym(B,,,) 15 @ BPS state in the SYM theory.
" Proof: - '

43
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The instanton satisfies the equations:
Fun=0 M,N ¢{6,7,8,9}
F=x+F M,N € {6,7,8,9}
Consider the supersymmetry variation for a spinor € of Spin(1l,p) x Spin(dr):
Sx =TMNcp\,/ N -

= % (I\MN Fan +TMNTO789 o N) €
, =TMNFyy (1 + r6789) €
5;'{:" So if
g e = —T%8% (11.1)
e ;"‘} then for the state [¥(A))yrm(s,,.4)
KA Sox = (T(A)e- @ XHU(A) =0 (112)

. That is: spinors satisfying (11.1) define supercharges € - Q in the QFT Y M(Bp14)
“which annihilate the instantonic-soliton. Therefore, these solitons pregerve at least (in
‘jeneral, exactly) half the supersymmetry.

[Aoreovey, there (S MaM/’J‘/Oa.ce ojl /{(Jf ‘QKJA és ;%é{/l, F(%)co}

— 11.1. Brane charges and instantonic solitons

Let us now return to the anomalous couplings on a Dp-bra,ne\\

As a special case of (10.3) we get the integaction:

n / CPH chd(F) + CP chy(F)
Chot? Wors of
b2 Let us choose a hyperplane B, C B4+4 such that: o desend

a!.ave.g
444 = By X Reygg A

afon

Let us furthermore co auge field configuration in the theory Y M(B}, 4) such

that -
' TeF A F = 8720

RG?BS

A (p + 4)-brane with/a U(w) brane gauge field with instanton number v i.e., a Chan-
Paton bundle with chayacteristic classes: (chg = w,chy = v) has the same RR charge as a
composite of w (p + A)-branes and v p-branes.
This suggests fhat just the way Dp-branes are the microscopic description of SUGRA

solitons, “braneg/within branes” give the microscopic description of the instantonic solitons

44
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10. The charge of a Dp-brane

We argued that D-branes carry charge. This means that the SUGRA action in the
presence of a brane must have something like the form:

L[ acet pvgcted 4y / o)

2 RI.S WP +1
and the presence of the brane modifies the equations to:

da+2) —

o (10.1)
iy d* GPH?) = (“1)P pn(Wpiy < S)

W p is the charge of the Dp-brane. Evidently, it should be proportional to the rank N
' of the CP bundle E — Wpy1.

10:1. Modification in the presence of gauge fields on the brane

» The presence of gauge fields on the brane modifies 1(10.1) in an important way.

We want to dodge several tricky issues so we just state what we believe is the correct
result.

Let:
.G =Y,dCP*D be the total RR fieldstrength

¢t : Wpy1 — S the embedding of the brane worldvolume into spacetime.

E — Wpy1 the CP bundle, with typical fiber V = CV.

F = F 4+ *(B)1N the modified fieldstrength.

chF = Try exp(L)

Then we claim that the equation of motion and Bianchi identity are unified into the
single equation:

4G = i,(chF) (10.2)

where ¢, is the push-forward defined using Poincare duality.

Heuristically, we write this in terms of §-functions over the coordinates z* transverse
to W:

gy iF
dG = || 6(z*)d=* - —
g (z*)dz® - Try exp( 27r)
o The derivation of (10.2) is based on the “inflow argument” associated with a configu-
o ration of orthogonally intersecting D-branes:
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12. The (p,p + 4) system

Let us now consider two parallel Dp branes.
(Bp+4,C”) || (B,,C")

Note there are two cases: /{\

Z:
67%19 -
Fig. 25 0)2 _'Jr
/ )
— |
B?.yq g

> pH, ==+ g

WA
N

()
~
KoY
-0

s Fig. 26: B, can lie within or outside B’ = B,44.
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